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Abstrae t - -A  theory of finite strain variation in contrasting viscous layers is presented. The theory is applicable to 
layers which are oblique to two principal strains, but parallel to the third, and is not restricted to plane strain. 
Results may be obtained algebraically or by use of the Mohr diagram for strain. Solutions are given for various 
examples of layering attitude and viscosity ratio, measured with respect to a reference layer. It is shown that the 
finite strain ellipsoid changes in shape and orientation across contrasting layers, and in some cases the principal 
axes may be exchanged. Low strain is indicated in relatively more viscous layers, and high strain with extension 
at a smaller angle to the layering, in less viscous layers; the latter may approximate simple shear parallel to 
layering if the strain is sufficiently high. 

The geological implications of the theory are strong strain variations in layered rock sequences. It is suggested 
that, in general, strain will be inhomogeneous from layer to layer both in orientation and amount. The 
relationship of strain and cleavage are reviewed in the Introduction to establish the validity of predicting cleavage 
patterns from strain data. Qualitative comparisons between the theoretical results of strain variation and natural 
cleavage refraction in layered rocks would appear to j ustify the assumption that cleavages of varied morphologies 
are sub parallel to the XY planes of strain. With this assumption, some three-dimensional features of planar and 
linear fabric refraction in contrasting rocks are predicted. 

INTRODUCTION 

THE VARIATION of strain in different lithologies may be 
studied through measurements of strained objects, 
geometric studies of structures such as folds, and rock 
fabric studies. However, strain markers rarely occur in 
abundance throughout a sequence of rock types; they 
are more usually confined to a particular lithology. The 
geometry of folds can only be used for strain data if 
certain assumptions of fold mechanism are made. Proba- 
bly the most commonly observed structures in deformed 
rocks are the rock fabric structures, foliations such as 
cleavage and schistosity and 'stretching' or mineral elon- 
gations. In deformed sedimentary and low-grade 
metamorphic rocks the rock fabric is generally identified 
in the field by macroscopic first cleavage planes at 
measurable angles to bedding planes, in both folded and 
unfolded rocks. The morphological nature of cleavage in 
particular lithologies and its variation in orientation may 
provide valuable strain data in rocks without strain 
markers. 

Sorby (1853 p. 145) described the feature now known 
as cleavage refraction in contrasting rocks thus: 

"When slates are composed of alternating beds of different charac- 
ter, the cleavage almost always does not pass straight through 
them, but lies nearer to the plane of bedding in the fine-grained 
and more perfectly cleaved varieties. When cleavage cuts the 
bedding at a moderate angle, this difference is often very consider- 
able; but where the bedding is perpendicular or parallel to it, there 
is little or no variation." 

Sharpe (1849), Sorby (1853) and Harker (1886) had 
recorded the relationship between slaty cleavage and 
deformed objects whose principal shortening was per- 
pendicular to cleavage planes. Sorby thus concluded 
that the refraction of cleavage which he observed (quota- 
tion) was a refraction of strain. Harker (1886) described 

cleavage in terms of a strain ellipsoid and similarly 
attributed cleavage refraction to refraction of strain 
ellipsoids, as a consequence of differential volume loss 
of slate and grit. 

This present paper essentially leads on from Sorby 
and Harker's ideas, but the intervening 130 years of 
research and debate on the significance of cleavages of 
various morphologies, to finite strain, cannot be neg- 
lected. A review of such work will concentrate on key 
influences in thinking. For fuller reviews of cleavage, 
readers are referred to Siddans (1972), Wood (1974), 
Means (1975, 1977), Tullis (1976), Williams (1976, 
1977), White & Knipe (1978), Powell (1979) and Bor- 
radaile et al. (1982). 

A move away from the view that refracting cleavage 
represented refracting strain was made by Leith (1905, 
1914). He introduced the terms 'flow' and 'fracture' 
cleavage for cleavage observed to refract from slate to 
sandstone respectively; flow cleavage was attributed to 
flow and recrystallization, and fracture cleavage to ten- 
sile failure. Leith's two mechanisms of cleavage forma- 
tion were adhered to by Wilson (1961), and played an 
important part in subsequent interpretations of cleavage 
patterns in contrasting lithologies (although questioned 
by Ramsay 1967). Subsequent explanations of either or 
both cleavage morphologies arising from tectonic dewat- 
ering (Maxwell 1962, Powell 1972) were short-lived. 
However, the two predominant cleavage morphologies 
remain in use if changed in name to slaty cleavage and 
spaced cleavage (Dennis 1967). Spaced cleavages include 
the genetic terms fracture cleavage, and pressure sol- 
ution cleavage (e.g. Geiser 1974, Gray 1981). 

The two commonly observed cleavage morphologies, 
slaty cleavage and spaced cleavage, may indeed arise 
from difficent mechanisms. However, they may differ 
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only on the scale of the cleavage domains (Powell 1979., 
Borradaile et al. 1982), or in the relative importance of 
cleavage-forming processes at the grain scale (rotation, 
recrystallization and pressure solution of White & Knipe 
1978). Moreover, in many rocks there is no clear distinc- 
tion between two cleavage morphologies, as illustrated 
by continuous cleavage refraction in graded sedimentary 
units (e.g. Borradaile et al. 1982, p. 515) as described by 
Ramsay (1967), p. 406). 

Despite the continuous spectrum of cleavage mor- 
phology observed in rocks, analyses of cleavage with 
respect to finite strain have been restricted, in the main, 
to slaty cleavage. The evidence of parallelism of slaty 
cleavage planes to the XYplanes of finite strain ellipsoids 
(X > Y > Z) determined from strained objects and 
markers, presented by Sharpe (1849), Sorby (1853) and 
Harker (1886), is supported by subsequent studies (Sid- 
dans 1972, Wood 1974). However, Williams (1976, 
1977) took a more critical view and in particular ques- 
tioned the evidence that XY planes are everywhere 
parallel to slaty cleavage in the North Wales Slate Belt 
(Tullis & Wood 1975), having observed evidence to the 
contrary. Such discussions and their answers (Wood & 
Oertel 1980) are of academic interest, but until data is 
provided, equal in quantity and accuracy to the evidence 
in Siddans (1972) and Wood (1974), to demonstrate 
consistent non-parallelism of cleavage to XY planes of 
strain, the empirical law must remain for slates. 

The relationship of finite strain to spaced cleavage is a 
matter of more controversy. While studies of strain in 
slates progressed, strain in rocks with spaced cleavage 
was unsought, perhaps because such cleavages were 
attributed to fracture or local pressure solution, rather 
than to finite strain. Recent studies of deformed 
sandstone dykes associated with spaced cleavage (Geiser 
1974, Groshong 1976) seem insufficiently conclusive as 
proof for or against, parallelism of XY planes to such 
cleavage. The deformation is very weak, both cleavage 
and dykes are commonly subperpendicular to bedding, 
and cleavage-dyke angles small. Whether this suggests 
an initiation of cleavage perpendicular to bedding and 
subsequent passive rotation, as the former authors 
suggest, must await further analyses. It might be asked 
whether spaced cleavage is a phenomenon of low strain 
whatever the lithology, or whether it occurs in particular 
lithologies (e.g. psammitic) which also only develop low 
strain. The strength of the case for XY-plane parallelism 
to slaty cleavage lies, in part, in the strain intensity which 
makes for clear XY-plane identification in strained 
objects. If spaced cleavage is a feature of weak strain 
(even if not parallel to a principal plane) the strain data 
needed to support or disprove the parallelism of spaced 
cleavage to local X Y  planes would require extremely 
sensitive strain markers and accurate measurement 
techniques. 

Such problems of analyzing the relationship of cleav- 
age to XY planes of finite strain evade the issues of why 
cleavages should be parallel to XY planes. The reviews 
of Williams (1976, 1977) and discussion in Hobbs et al. 
(1982) put the case strongly that because cleavage 
develops through a complexity of microstructural pro- 

cesses (White & Knipe 1978), there would seem no 
reason to expect cleavage to be parallel to the XYplanes 
of macroscopic strain. The essence of the argument 
against the parallelism of cleavage and XY planes 
(Williams 1976, Hobbs et al. 1982) is that cleavage, at a 
particular stage of development, is a material plane 
defined by fabric domains; in contrast the XY plane in a 
general (rotational) strain history is a non-material 
plane. The authors argued that the two could not remain 
parallel during progressive strain, unless this was irrota- 
tional. However, Ghosh (1982) considered this problem 
with simple plus pure shear and demonstrated that the 
angles between initial XY-cleavage planes, deformed as 
passive planes, and finite XY planes was less than 5 ° and 
thus probably not measurable. Whether this argument 
applies to material and non-material planes in layers 
with very low strain, where spaced cleavages occur, 
awaits confirmation. 

In contrast with the above school of thought is that led 
by Ramsay (1967), which holds that cleavage patterns 
are natural finite-strain trajectories. The similarity 
between cleavage fans around natural folds 
(Mukhopadhay 1965, Roberts 1971), and strain patterns 
in experimental folds (Ramberg 1962, Roberts & Str6m- 
ghrd 1972) is given as evidence for the assumption that 
all cleavages are subparallel to X Y  planes. Ramsay 
(1967, pp. 403-406) discussed cleavage refraction and 
cleavage fanning around folds together, in terms of 
models of strain in folding: cleavages fans were described 
as convergent or divergent with respect to an anticlinal 
fold. Thus cleavage refraction would be part of a 
cleavage-fanning system as a result of folding. Finite 
element analyses of folds (Dieterich & Carter 1969, 
Shimamoto & Hara 1976) afford a comparison of strain 
patterns in theoretical folds with natural cleavage pat- 
terns (Dieterich 1969). The similarity of the patterns has 
confirmed the view that natural cleavages are parallel to 
XY planes of finite strain. The mechanical problems of 
cleavage formation do not enter this line of argument. 

In the present paper, cleavage refraction is considered 
as a feature peculiar to a change of lithology rather than 
dependent on a particular form of strain in folding. The 
manner of cleavage refraction described by Sorby (1853, 
quoted previously) and Harker (1886) will be investi- 
gated in the following way: given a particular strain state 
in one rock type, what would be a compatible strain state 
in an adjacent rock type of different properties? To 
answer this, a theoretical model of finite strain variation 
through layers of contrasting properties is developed 
which is considered applicable to rocks, following earlier 
infinitesimal strain refraction theories (Treagus 1973, 
1981). This approach is distinct from Goguel's (1982) 
which used slaty-cleavage refraction to derive stress 
patterns in contrasting lithologies by assuming that 
cleavage formed perpendicular to a principal stress. 

Strain patterns derived theoretically in the present 
paper will be applied to geological strain variations, and 
compared to observed cleavage refraction patterns. The 
similarities, or differences, of strain refraction patterns 
(particularly the sense of refraction with associated 
strain variations), and natural cleavage refraction pat- 



Finite strain variations and cleavage refraction 353 

terns and cleavage morphology changes, should contri- 
bute to the debate on the relationships between cleavage 
and strain. 

THEORETICAL M O D E L  OF TWO-DIMENSIONAL 
FINITE STRAIN REFRACTION 

A two-dimensional geometrical model of strain refrac- 
tion is shown in Fig. l(a). Two strain ellipses of different 
shape but equal areas in layers A and B, meet at the layer 
interface trace, x. Thus the two longitudinal strains 
along x are equal for A and B, but the shear strains are 
not. The two semiellipses are geometrically compatible, 
but an infinite number of compatible ellipses could be 
drawn for B (Fig. lb). It is common in geology to use 
geometric or kinematic models for structures (e.g. 
Hobbs 1971), but the disadvantage is that such models 
may not be viable dynamically. In the case of strain- 
ellipse refraction, criteria are required to distinguish 
which of the configurations in Fig. l(b) is mechanically 
viable: it is assumed there is only one solution for a 
particular AB system. 

The criteria used in the theory follow those of two 
previous studies (Treagus 1973, 1981) of infinitesimal 
strain refraction in viscous layers. The system is defined 
in Fig. 2 and the assumptions and constraints of con- 
tinuity are listed below. 

(1) The material of layers A and B are Newtonian 
viscous throughout deformation with homogeneous vis- 
cosities of "0A and ~B respectively and viscosity ratio 
V - - "  'F/B/7]A. 

(2) The materials are incompressible so the strain 
ellipsoid axes ( X >  Y>Z)  have the relationship 
X A "  Y A "  Z A = X B "  Y B "  Z B = 1. 

(3) The interface plane (xz) of layer A to layer B 
contains one principal axis of strain ellipsoids A and B. 
Unless otherwise defined this is Y, the two-dimensional 
view is the XZ plane of each ellipsoid, and YA = YB. 

(4) For initial simplicity, plane strain is assumed such 
that YA = YB = 1. Modifications will be applied in sub- 
sequent sections. 

(5) The strain ellipse on the interface plane (xz) is the 
same for A and B. In terms of quadratic elongations, 
' ~ A x  --'~ ABx, and reciprocals h~,x = h~x. Similarly, 
AAz ----- ABz and A),z = h~z; from (4) these would be unity. 

(6) The condition of contact is that the shear stress 
parallel to x is equal for A and B, throughout the strain 
history: tax = ~'Bx. Hence "0A'~/Ax = T~B')/Bx , where ~/is the 
infinitesimal shear-strain rate. The relationship of finite 
shear strain is found to be simply 7}A3,Ax = T/B3,Bx or 
3,Ax/3,Bx = V (see Appendix 1). [This simple equation is 
also derived (for the Newtonian case but not for other 
rheological models) in a parallel study of the kinematics 
and mechanics of interfaces by Cobbold (this issue)]. 

Denoting 3,' = 3'/A (Ramsay 1967, p. 68) it follows 
that ' ' 3,gx/3,Bx = V a l s o .  

Of these six criteria, the last two are particular 
constraints of this model which arise from assumptions 
of continuity and adherence. The equations can be 
combined to give an algebraic solution for finite strain 
SC%3/~-I  

XA 

~ZB 

Z, ~! B 

x 

\ \X. 

Fig. 1. (a) A geometrical model of strain refraction, (b) A series of 
geometrically-viable refracted strain ellipses in B from a known ellipse 

(A). 

A 

71 a 

\' 
Fig. 2. Theoretical model with nomenclature; x is the interface trace of 

plane xz  between layers A and B. 

Table 1. Summary of algebraic solution, from Appendix. 

A~I, 0~ and V (=T/B/'0A) are known variables defined in Fig. 2. 
Calculate 

, (1 + A~,~) - (1 - A~)  cos 20~, 
L = AAx = 

2A~,l 

s = ~,~ = (j - "~) sin 2o~, 
2A~.1 

l + L 2 + S2/V 2 
M -  

L 

Then 

M -  x/~r-S7 
2 

M+ x / ~ - - ' ~  
2 

0A = sin-l [2S/(VX/M2 - 4)],  or 
2 

0~ = tan -t  [2SLV/(V 2 - VZL 2 + SZ)]/2. 

refraction across a viscosity contrast of known ratio and 
orientation. The full algebraic solution is given in 
Appendix 2. The key equations needed for the reader to 
determine solutions for particular systems are given in 
Table 1. 
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T' 

Solutions may be obtained without such computation,  
however,  but by Mohr construction. This method not 
only provides graphical solutions to the equations in 
Table 1, but also serves as a useful tool to illustrate the 
theoretical framework. 

The Mohr diagram as a graphical solution 

The Mohr diagram for reciprocal quadratic elongation 
will be used, following Ramsay (1967, p. 73). The 
method is illustrated by the example in Fig. 3. Circles are 
drawn for the states of strain in two dimensions (plane 
xy, Fig. l a); these are the X Z  principal planes. It is 
assumed that h~l, A~3 and 0~, are known. Using 20~, the 
coordinates of x A (A~x, 7~,x) will define L and S, respec- 
tively. From laws (5) and (6) above h~x = h~,x and y~x = 
y~,×/V. Hence,  the coordinates o fx  for layer B (xB) are L 
and S/V. In Fig. 3, V -- 0.5 andxB is plotted accordingly. 
One point on the Mohr circle for layer B is therefore 
known. 
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The assumption of plane strain such 
t h a t  AX1" }tA3 = )tBI " ht~ 3 ~--- 1 a l s o  l i m i t s  

the position of the Mohr circle. There  is 
a unique set of circles which may be 
drawn for this condition, shown in Fig. 
4. The position of XB plotted on Fig. 4 
will immediately give the Mohr circle 
for B: it has AB1 ~- 0.27, h~3 = 3.7 and 
0~ = 25 °. 

The Mohr-diagram method may be 
used to derive all solutions for refracted 
strains for layers A to B, on one figure. 
The Mohr circle for layer A represents 
strain in any orientation in the xy plane, 
so represents all 0k (double angles 
clockwise) Compatible strains in B fall 
on an ellipse of distortion proportional 
to the inverse of V (Fig  5 )  Individual 
Mohr circles can be drawn from points 
on this elliptical locus, using the con- 
tours of F ig  4 Figure 5, therefore,  
completely illustrates the control of the 
viscosity ratio on refracted strains, par- 
ticularly the large strains generated in 
layers of relatively low viscosity; it illus- 
trates which orientations of layering (x) 
generate maximum and minimum 
strains in B 

Fig. 4. Sets of Mohr circles satisfying the con- 
ditions of equal-area plane strain (h') or equal- 
area apparent plane strain (~:'). Numbered dots 
on the abcissae are the centres of each numbered 
Mohr circle. The dotted loci in (b) join points of 
equal O~ (numbered): the complementary angles 
in brackets are equivalent to the strain angle/3~ of 

Treagus (1982). 

(o) ~ Fig. 3. The Mohr diagram method of strain solution--see text for 

/ explanation. 

2 

/ C ° / \ \ \  / / 20 I ~.o 40 " - -  
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Fig. 5. Mohr  diagram showing Mohr  circle A distorted according to 
viscosity ratio V (numbered) .  The  position for min imum refracted 
strain is given by the tr iangle-tr iangle arrow to the V = 5 locus and the 
appropriate Mohr  strain circle drawn. Similarly the position of  
max imum refracted strain is given by the square -square  arrow to the 
V = 0.2 locus, and part  of  the appropriate Mohr  strain circle drawn. 
The  two circles on the V = 0.2 locus indicate positions, on the 
apparent  plane strain Mohr  diagram (~:', y ' ) ,  of  pure construction 
(k = o,) for XY planes and pure flattening (k = 0) for Y Z  planes: 
these are discussed later under  "Strain refraction of o ther  principal 

planes".  

STRAIN REFRACTION RESULTS, PLANE STRAIN 

The theory and its Mohr-diagram method of solution 
will be illustrated by four examples (Fig. 6). As formerly 
defined, the plane of study (xy plane, Fig. la) is the X Z  
principal plane, and YA = II8 = 1 is parallel to z on the 
interface plane. A state of strain is chosen for A to be the 
same in the four examples of Fig. 6: A~a = 0.5, 
A~3 = 2.0; that is XA = 1.41, YA = 1, Z A = 0.71. Two 
viscosity ratios of V = 5 and V = 0.2 (V = r/S/rtA) and 
two 0~ interface orientations (x A XA) of 60 ° and 30 ° are 
chosen. The Mohr-diagram solutions are accompanied 

by the actual X Z  strain ellipses for A and B in Figs. 
6(a)-(d). Exact results are given in Table 2. 

The results of Fig. 6 demonstrate the control of vis- 
cosity ratio V, and interface orientation 0'a, on the size 
and orientation of the refracted strain ellipses in B. 
Figures 6(a) & (b) for the more viscous 'layer' than A, 
( V - - 5 )  show B ellipses nearer to circular than A 
ellipses; that is, lower strain values. The refraction of the 
strain axes is towards orthogonal to the interface. In Fig. 
6(a), XB is closer to the interface pole, but in Fig. 6(b) ZB 
is refracted towards this pole. Thus, the orientation of 
the interface (0~) controls the sense of refraction in the 
V > 1 examples. 

Figures 6(c) and (d) show refracted strains in the less 
viscous 'layer' than A, (V = 0.2). In both examples 
high-value strains occur. The sense of refraction does 
not change with 0~: for both (c) and (d), X~ lies closer to 
the interface trace than X A so that 0~ > 0~. With 
increasing B strain, 0~ reduces to quite small angles. 
Because the strain in x is low compared to the principal 
strains, the B strain ellipse (incompetent) may be 
approximated to simple shear in x. However good the 
approximation, it is merely a geometric one; only where 
x is a line of no-finite-longitudinal-strain in ellipse A, can 
the B ellipses be truly termed simple-shear ellipses. 

The above examples have limited application, but are 
useful for illustration. The Mohr-diagram method may 
be used to derive data on a more varied system of 
viscosity ratios and layer orientations, and in different 
states of reference strain (A). Following the method of 
Fig. 5, Fig. 7 shows strain loci for two values of A~ (0.5 
and 0.25) and six viscosity ratios in the range 0.1-10. 
Figure 7(a) may be used in conjunction with the con- 
toured diagram (Fig. 4) assuming equal-area plane 
strain, to give specific values of 0~ and A~I for particular 
0~, and V. Likewise, Fig. 7(b) may be used with a similar 
contoured diagram at the appropriate scale. Values of 
A~I have been converted to shortening ZB, and the 
results graphed against reference orientation 0~ in Fig. 
8. Maximum variations of ZB from ZA occur in the range 
0~ = 30-50 ° in both graphs. 

Figure 9 illustrates angles of strain refraction: (a) is for 
infinitesimal strain (from Treagus 1973) and (b) and (c) 
for the two reference strain states (A~u = 0.5 and 0.25) 
in Figs. 7 and 8. The angle of strain refraction is the 
difference (0~,-0~); this is given in Fig. 9 by the ordinate 
distance from the diagonal line 0~ = 0~, simply mea- 
sured on the 0~ scale. Where curves cross the diagonal 
line are positions of no refraction and therefore 
homogeneous strain of A and B. Figure 9 may be used to 
construct strain trajectories through contrasting viscous 

Table 2. Numerical  results for plane-strain examples,  Yparallel  to layering 

XA YA ZA AAI AA3 V 0k : A~t A~3 XB YB ZI3 0~ 

1.41 1.0 0.71 0.5 2.0 5.0 60 ° : 0.61 1.64 1.28 1.0 0.78 83 ° 
30 ° : 0.83 1.21 1.1 1.0 0.91 20 ° 

,, " ',', ',', i', 0'.'2 60 ° : 0.12 8.62 2.94 1.0 0.34 25 ° 
. . . . . . . . . . . .  30 ° : 0.07 14.0 3.75 1.0 0.27 14 ° 
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Fig. 6. M o h r - d i a g r a m  so lut ion  and  s tra in-e l l ipse  s k e t c h e s ,  for four  e x a m p l e s  o f  Y = 1 paral le l  to  l ayer ing  and  Akl = 0.5: 
(a)  V = 5,  0k = 60°; (b) V = 5,  0k  = 30°; (c)  V = 0 .2 ,  Ok = 60°; (d)  V = 0 .2 ,  0~, = 30 ° . 
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layers. Figure 10 shows the Xtrajectories (the XYplane 
traces) for two layering orientations: trace 1 is the 
infinitesimal X trajectory and traces 2 and 3 X trajec- 
tories for different finite reference strain states in the 
shaded layers. Associated with the angular strain refrac- 
tion is a progressive increase in strain intensity with a 
decrease in V, shown in Fig. 8. 
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Fig. 10. Three strain trajectories (X) in multilayers of varied viscosity 
ratio V (numbered) to the reference layer (shaded); data taken from 
Fig. 9. Trace 1 is the infinitesimal X trajectory after Treagus (1973), 
(Fig. 9a); trace 2 is the X trajectory for reference strain XA = 1.41, 
Z a = 0.71 (Fig. 9b); trace 3 is the X trajectory for reference strain 
X A = 2.0, ZA = 0.5 (Fig. 9c). Y = 1 parallel to layering, perpendicu- 

lar to page throughout. (a) G, = 60 ° and (b) 0~. = 30 °. 
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STRAIN REFRACTION RESULTS FOR 
NON-PLANE-STRAIN ELLIPSOIDS 

The theory so far presented has been for two-dimen- 
sional strain refraction where the plane of study, xy of 
the model,  is the X Z  principal plane of all strain ellip- 
soids, Y= 1 and thus X= 1/Z. It was the last condition which 
made the Mohr diagram method so simple (Fig. 4). It is 
possible to extend the theory to non-plane-strain ellip- 
soids (YA = YB ~ 1) and still obtain solutions. In this case 
ellipse XAZ A and ellipse XBZ B are not unit area ellipses, 
but have areas 1/Y A if deformation is volume conservative. 

A method is used where the X Z  strain ellipses are 
treated as apparent unit-area ellipses by altering the 
scale. For example, ellipse A may be scaled such that the 
axes XA and ZA are both multiplied by a factor 1/YA m 
and the scaled axes then have a reciprocal relationship. 
Ellipse B must be scaled accordingly. The apparent-unit- 
area ellipse A may be plotted on the Mohr unit-area 
contoured diagram (e.g. Fig. 4), the apparent ellipse B 
obtained from V, and the real strain ellipse B determined 
by scaling back. 

The symbol 6' will be used for reciprocal quadratic 
elongations in the apparent unit-area strain ellipses. In 
layer A, A~l = 1/XA 2, A~,2 = 1/YA 2 and A~,3 = 1/ZA 2. 

! ! 
Hence ~ l  = AA1/Yz or SeA1 = 1/XA 2" YA and ~A3 = 1/ 
ZA 2" YA" Similarly in layer B, ~ l  = 1/XB 2. Y~ and 
sc~3 = 1/ZB 2" YB and YA = YB. 

For simplicity, examples are considered here where 
the apparent unit area strain ellipse has ~,~ = 0.5, 
~A3 = 2.0 SO that the apparent  strain ellipses are identical 
in shape to the real strain ellipses in Fig. 6 and Table 2. 
Four  examples of YA are considered for each, and the 
apparent  and real refracted strain results given in Table 
3. The value of YA does not affect 0~ but it affects the 
absolute strain. In all the examples the ellipsoids are 
triaxial, and may best be compared in size and shape on 
a Flinn (1962) style plot (Fig. 11). The strain ellipsoids in 
the V = 5 layers fall into a low strain area with k ranging 
from 0 to oc. Positions where loci are reflected at the 
graphical coordinates indicate an interchange in strain 
axes from A to B such that YA = XB or YA = ZB 
(starred in Table 3). In these cases the two-dimensional 
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Fig. 11. Flinn (1962)-type strain plots of X/Y against Y/Z, logari thmic 
scale for non-plane-s t ra in  examples  of Table  3. Examples  where  V = 5 
are plotted in (a) and V = 0.2 in (b); note the different scales. For  all 
examples  ~:k~ = 0.5. Loci of  strain refraction for a part icular YA 
(numbered )  and variable 0k are given by heavy lines with symbols ,  
shown broken  in the axial-interchange mode .  Loci of  strain refraction 
for a part icular  0~, (degrees  n u mb ered  30, 60, etc.) and variable YA are 
marked  by fine pecked lines. The  refracted strain ellipsoids for Fig. 6 
are shown by stars where  the YA = 1 lOCUS intersects the 0~ = 30 and 

60 ° loci. 

Table  3. Numerica l  results  for  non-plane-s t ra in  examples ,  Y parallel to layering 

X A  YA Z A  ~ k l  ~ k  3 V 0 k ~BI ~B3 X B  YB Z B  0B 

1.26 1.26 0.63 0.5 2.0 5.0 60 ° 
30 ° 

',', Z', ii ii i', 0'.? 600 
. . . . . . . . . . . .  300 

1.22 1.1 0.74 0.5 2.0 5.0 60 ° 
30 ° 

i', ii ii i', 0'.'2 60 ° 
. . . . . . . . . .  30 ° 

1.49 0.91 0.75 0.5 2.0 5.0 60 ° 
30 ° 

ii ii ii ',i i', 0'.? 60 ° 
. . . . . . . . . . . .  30 ° 

1.60 0.79 0.79 0.5 2.0 5.0 60 ° 
. . . . . .  ,, ,, 30 ° 
. . . . . .  ,. 0'3 60 ° 
, ,  , ,  , ,  , ,  , ,  , ,  3 0  ° 

0.61 1.64 1.26 1.14 0.7 * 83 ° 
0.83 1.21 1.26 0.98 0.81 * 20 ° 
0.12 8.62 2.57 1.26 0.30 25 ° 
0.07 14.0 3.37 1.26 0.24 14 ° 

0.61 1.64 1.22 1.1 0.74 835 
0.83 1.21 1.1 1.04 0.86 * 20 ° 
0.12 8.62 2.75 1.1 0.33 25 ° 
0.07 14.0 3.6 1.1 0.25 14 ° 

0.61 1.64 1.35 0.91 0.82 83 ° 
0.83 1.21 1.16 0.96 0.91 * 20 ° 
0.12 8.62 3.03 0.91 0.35 25 ° 
0.07 14.0 3.96 0.91 0.28 14 ° 

0.61 1.64 1.42 0.88 0.79 * 83 ° 
0.83 1.21 1.23 1.02 0.79 * 20 ° 
0.12 8.62 3.33 0.79 0.39 25 ° 
0.07 14.0 4.20 0.79 0.30 14 ° 
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a] v =5, 0 k -  60" 

b) v=5,0k= 3o" 

YA=I YA=I.I YA=.91 

YA=Ye YA=Ys  Y A = Y .  

YA=Ye YA=Xs YA=Ze 

YA = 1 YA = 1"1 YA = "91 

C) V =0"2, 0 k =60" ALL YA d} v =0"2, 0k=30"ALLYA 

Y* = YB YA=YB 

Fig. 12. Orientations of refracted strain axes in examples of varied YA value parallel to layering (Table 3), and with strain 
ellipsoid shapes shown in Fig. 11. For all examples ~,l = 0.5. Heavy lines show the interface trace, pecked lines the 
refracted XY planes. Note axial interchange in (b) for YA = 1.1 and 0.91. (Lower hemisphere equal-area nets.) 

plane of study changes from X Z  in A to YZ or XY in B. 
In contrast the strain ellipsoids in the V = 0.2 layers 
(Fig. l l b )  show no instances of axial interchange but 
consistently high strain, reaching a maximum for 
Ok = 38 °. 

The orientations of XB, YB and ZB are illustrated 
stereographicaUy for the examples in Table 3, in Fig. 12. 
The normal sense of strain axes occurs in plots (a), (c) 
and (d), but (b) shows axial interchange. 

STRAIN REFRACTION RESULTS FOR OTHER 
PRINCIPAL PLANES 

The two-dimensional finite strain refraction theory 
has, until now, been restricted to YA = YB parallel to 
layering and to the X Z  plane as the plane of study. It is 
possible to apply the theory to the other  principal planes, 
however. The two-dimensional theory merely requires 
one principal axis of the strain ellipsoid to parallel 
layering, and this may be X or Z as well as Y. The 
apparent  plane-strain method of the previous section 
will be followed. 

XY principal planes 
In this c a s e  Z A = Z B is parallel to z in layering. The 

XAY A and X~YB strain ellipses will have areas 1/ZA. 
They may be converted to apparent unit-area ellipses of 
reciprocal quadratic elongations ~:' by ~kl -- 1/XA z" ZA, 
~k2 = 1/YA 2" ZA and similarly for layer B. 

Examples are again considered which make use of the 
results in Fig. 5: ~kl = 0.5, ~k2 = 2.0, and V = 5 or 0.2. 
YA is here taken as unity. The real and apparent strain 
for layer A, and the results for layer B are given in Table 
4. The strain plot (Fig. 13) illustrates the change in k 
value from k = 1 in A to various B values. The V = 5 
line (solid) shows refracted strain ellipsoids move into 
the flattening field with increasing Ok, to the most oblate 
form at 0k = 35 ° (this is the minimum strain shown by 
the solid triangle of Fig. 5); from 0k = 35-90 ° the ellip- 
soids move back to k = 1. The V = 0.2 lines (broken) in 
Fig. 13 indicate strain ellipsoids in the prolate field with 
critical angles of 0k = 15 and 61 ° where the strain is pure 
constriction (k = ~ ,  YB = ZB). These strain states are 
indicated in Fig. 5 (circles) by the points where the Mohr 
circle for ~B1 = 0'51/3 cuts the elliptical locus labelled 
V = 0.2. In the field 0k = 15--61 °, there is an inter- 
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Table 4. Numerical results for XY-plane solutions, Z parallel to layering 
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x~ YA ZA ~ h t  ~h2 V 0 h ~B1 ~B2 XB YB ZB 0t~ 

2.0 1.0 0.5 0.5 2.0 5.0 60 ° 
30 ° 

. . . . . . . . . .  0.2 60 ° 

. . . . . . . . . . . .  30 ° 

0.61 1.64 1.81 1.1 0.5 83 ° 
0.83 1.21 1.56 1.28 0.5 20 ° 
0.12 8.62 4.15 0.5 0.48 * 25 ° 
0.07 14.0 5.29 0.5 0.38 * 14 ° 
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Fig. 13. Strain plots (see Fig. 11) for XY principal-plane orientations 
(ZA parallel to layering), YA = 1 and 6hl = 0.5. Reference strain (A)  
is starred; successive 0h values symbolled and numbered; solid line is 
V = 5 and broken line V = 0.2; arrow indicates axial interchange; 

dot-dash line indicates strain ellipses in the changed mode. 

II) V=5 .  S A - 6 0 "  b) v = 5 .  Ok=30"  

ZA--'Z s Z , = Z  e 

c} v-o.2, 0k-6o' 

ZA = Yu 

d) v =0"2.0k=30" 

I 

, z.]*" 

ZA = Yu 

Fig. 14. Orientations of refracted strain axes in X Y  principal-plane 
examples (ZA parallel to layering), ~hl = 0.5; (c) and (d) are in the 
changed mode (YB parallel to ZA). Lower hemisphere equal area nets. 

change of principal strain axes from layer A to B such 
that Z A = YB as asterisked in Table 4. Figure 14 shows 
the orientations of the principal strain axes in A and B 
for the examples of Table 4 indicated in Fig. 13; plots (c) 
and (d) are in the 'changed mode'. 

YZ principal planes 

XA = XB is parallel to z of the layering. The method 
follows that described above for the X Y  plane. In this 
case, ~ 2  = 1/YA 2" XA and ~ 3  = 1/ZA 2" XA, and simi- 
larly for B. Examples will again be given where ~:~2 = 0.5 
and ~ 3  = 2.0 and YA = 1, with reference to Fig. 5. The 
results are given in Table 5, and plotted on the strain plot 
(Fig. 15). 

The results are generally reciprocal to those described 
for the XY planes. The V = 5 solid line demonstrates 
that the refracted strain ellipsoids become progressively 
prolate from 0~ = 0-35 °, and then reverse in trend. The 
V = 0.2 broken lines give oblate ellipsoids, with axial 
change at 0~, = 15 and 61 °. In the range 0~, = 15-61 °, 
YB = XA as asterisked in Table 5. Figure 16 shows the 
orientations of principal axes for the examples of Table 
5 and indicated in Fig. 15; plots (c) and (d) show axial 
interchange. 
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6- 

5 - 

X/y 

3- 

35 3O 

~ . ~ p  o. 90 

2 3 4 

YI Z 

a~ 
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45 .,/ 

~ 15.61 / 
- ,  X~/ 

5 6 7 8 9 I0 II 

Fig. 15. Strain plots (see Fig. 11) for YZ principal-plane orientations 
(X A parallel to layering), YA = 1 and ~.2 = 0.5. Reference strain (A) 
is starred; successive 0h values symbolled and numbered; solid line is 
V = 5 and broken line V = 0.2; arrow indicates axial interchange; 

dot--dash line indicates strain ellipses in the changed mode. 



362 S.H. TREAGUS 

Table 5. Numerical results for YZ-plane solutions, Xparallel to layering 

XA YA ZA ~A2 ~A3 V 0k  : ~B2 ~B3 XB YB ZB 0~ 

2 .0  1.0 0 .5  0 .5  2 .0  5 .0  60 ° : 0 .61 1.64 2 .0  0 .91 0 .55 830 
30 ° : 0 .83  1.21 2 .0  0 .78  0 .64  20 ° 

. . . . . . . . . .  0"2 . . . . . . . . . .  . 60  ~ : 0 .12  8 .62  2 .08  2 .0  0 .24  * 25 ° 

. . . . . . . . . . . .  30 ° : 0 .07  14.0 2 .65  2 .0  0 .19  * 14 ° 

a} ..v=5,0k=6o • b} v=5, OA=3o' 

X,=X. XA=Xe 

c) v=o2,0k=6o ° dl v=O.2,0k=30" 

XA = YB XA = Ys 

Fig.  16. O r i e n t a t i o n s  o f  r e f r a c t e d  s t r a in  axes  in Y Z  p r i n c i p a P p l a n e  
examples (XA parallel to layering), ~2 = 0.5; (c) and (d) are in the 
changed mode (YB parallel to XA). Lower hemisphere equal-area nets. 

GENERAL FINITE STRAIN REFRACTION 

The present two-dimensional analysis can only be 
applied to planes which remain coplanar across viscosity 
contrasts during strain. All the examples have been 
restricted to cases where one principal strain axis is 
parallel to the layering interface. Because this axis is the 
same for all layers by definition, it follows that the 
principal plane perpendicular to the axis is consistent 
across viscosity contrasts. 

Four separate cases have been considered: (1) Y 
parallel to layering, Y = 1; (2) Y parallel to layering, 
Y # 1 ; (3) Z parallel to layering (YA = 1 # YB) and (4) 
X parallel to layering (YA = 1 # YB). Examples could 
have been given for (3) and (4) where YA # 1. 

A general oblique orientation of layering with respect 
to X, Y and Z in layer A cannot be considered by this 
theoretical model because there is no unique plane 
which has remained continuous and coplanar through- 
out strain across viscosity contrasts. Finite strain refrac- 
tion in the general case will require three-dimensional 
solutions like the infinitesimal theory (Treagus 1981). In 
losing the advantage of the two dimensional illustration 
and the simplicity of the present Mohr-diagram solution, 

the results, when found, will prove more difficult to 
illustrate. Three-dimensional finite strain refraction 
theory is a subject for future research. 

GEOLOGICAL DISCUSSION 

An application of the theoretical results to geological 
strain and cleavage patterns is conditional on the follow- 
ing criteria. 

(1) Rocks are considered to approximate to New- 
tonian behaviour with an apparent constant (isotropic) 
viscosity. 

(2) There is no volume loss. (However, the theory is 
readily adaptable to strain with dilation, if the dilation 
factor is constant for A and B). 

(3) Bedding-plane interfaces retain adherence such 
that continuity exists. 

(4) Layering is two-dimensionally oblique. One prin- 
cipal strain axis is parallel throughout the system, and 
lies in the interface plane. 

Of these criteria (1) and (2) are considered as a 
reasonable starting point for a theoretical model. How- 
ever, the assumption of isotropy may restrict the validity 
of the theory for large strains. With progressive finite 
strain and the associated development of a planar or 
linear fabric, an initially-homogeneous rock will become 
progressively anisotropic. This progressive anisotropy 
would be expected to influence incremental strain refrac- 
tion during progressive strain (Cobbold 1976). An inclu- 
sion of a progressive anisotropy factor variably oblique 
to layering is beyond the scope of the present theory, but 
a possible direction for future research. Assuming an 
isotropic viscosity, estimates of rock viscosity are dis- 
cussed below. Criterion (4) is not considered applicable 
to all deformed rocks by this author (see e.g. Treagus & 
Treagus 1981, Treagus 1981). Nevertheless much 
geological evidence does merit it as a useful (if only 
approximate) model; this evidence is given below. 

In the proceeding discussion particular features of 
strain refraction are described with geological implica- 
tions, concluding with a discussion of cleavage refrac- 
tion. 

Rock 'viscosity' ratios 

Shimamoto & Hara (1976) attempted to determine 
viscosity ratios in Japanese metamorphic rocks from 
wavelength-thickness ratios of folded quartz veins in 
different matrix rocks. Their data give the following 
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approximate mean V values: 25 for quartz/mafic schist, 
33 for quartz/psammitic schist and 125 for quartz/pelitic 
schist. Thus, a competence sequence can be demon- 
strated with respect to pelitic schist from quartz veins 
(V = 125), through mafic schist (V = 5) to psammitic 
schist (V = 4). There is no data on competent rocks such 
as quartzites and psammites but these are presumed to 
fall in the range V = 5-125 with respect to pelite. Thus, 
the theoretical ratios of V = 5 and 0.2 with respect to the 
reference viscosity which give maximum competence 
ratios of 25 would seem reasonable for sedimentary/ 
metamorphic rocks of sandstone/shale or psammite/ 
pelite range, although there is very little data to use as 
evidence for this claim. 

Evidence for two-dimensionally oblique strain 

Three symmetry types of finite strain ellipsoids and 
layering are possible in deformed rocks: (1) orthogonal 
or orthorhombic, (e.g. layer-parallel shortening); 
(2) two-dimensionally oblique or monoclinic, and 
(3) three-dimensionally oblique or triclinic. It is suggest- 
ed that (1) is unlikely to operate throughout a deform- 
ation. While layer-parallel strains such as compactional 
flattening or layer-parallel compression prior to folding 
may exist in subhorizontal sediments, once the layers 
become folded they would proceed in two-dimensionally 
oblique strain, except perhaps, in certain positions such 
as fold hinge zones. Thus, the finite strain would be at 
least two-dimensionally oblique. The geological evi- 
dence for three-dimensionally oblique systems was given 
by Treagus & Treagus (1981) and Treagus (1981) as 
folds cross-cut, both axially and in profile, by their 
synchronous cleavage. However, in many areas of 
deformed layered rocks, the structural observations 
would appear to support a two-dimensionally oblique 
strain model, either completely or as a good approxima- 
tion. 

The most convincing geological evidence for two- 
dimensionally oblique strain is considered to be where 
sequences of folded layers have refracting and fanning 
cleavage intersecting layering parallel to fold or boudin 
axes. This is a common observation in many primary 
folds, so classical that it is sometimes assumed to be the 
general rule. Where the cleavage-bedding intersections 
are demonstrably parallel to the fold axes in contrasting 
lithologies, and cleavage refracts viewed in the fold- 
profile plane, the following conclusions would seem 
logical. 

(1) Cleavages are approximately parallel to XY 
planes. 

(2) Fold axes are (a) parallel to a constant Y axis, or 
(b) parallel to a constant Xaxis, or (c) parallel to neither 
X nor Y but perpendicular to a constant Z axis in the 
layering envelope plane. 

Statement (1) bypassed any mechanical arguments on 
the relationship of strain and fabrics, but the conclusion 
seems valid on purely circumstantial grounds. In state- 
ment (2), the situation (a) might be expected most 
commonly. Evidence for (b) should be given by exten- 

sional structures parallel to fold axes, and for (c) by 
lineations in the cleavage planes oblique to fold axes, 
variably in different lithologies. 

The geological evidence for two-dimensionally 
oblique strain should be collated for all lithologies. The 
presence or absence of a strong linear structure in one 
layer alone may not indicate the total or 'bulk' strain 
axes for reasons given in the next sections. 

Strain variation and refraction 

The underlying control of strain refraction, in theory, 
is the criterion that the shear strain ratio at an interface 
is equal to the inverse viscosity ratio (see also Cobbold, 
this issue). A relative increase in viscosity implies an 
equivalent decrease in shear strain, and vice versa. From 
this factor alone, it follows that strain cannot be 
homogeneous across viscosity contrasts if there is shear 
strain parallel to layering. The change of strain is 
accomplished by refraction of strain axes and changes in 
principal strain values. These principles apply to strain 
refraction in any layered system where the principal 
finite strain axes are not orthogonal with respect to layer 
interfaces. 

From the preceding theoretical results for strain 
refraction in two-dimensionally oblique systems, three 
interrelated features can be identified. 

(1) Two principal finite strain axes will refract, layer 
to layer within one principal plane: therefore two princi- 
pal planes will refract. 

(2) In the two-dimensional view (XY, X Y  or YZ 
principal planes), strain ellipses will change shape from 
layer to layer. 

(3) In three dimensions, strain ellipsoids will change 
their shape factors (k) from layer to layer. The only 
exception is the case where all refracting ellipsoids have 
k = 1, only true for X Z  plane views and Y = 1 parallel 
to interface. 

The above features were illustrated theoretically in 
comparison to a reference layer A (chosen strain values 
given by Tables 2-5). The results are thus specific to the 
choice of the reference strain value, orientation and 
viscosity ratios. Any geological application will be 
dependent on the justification of the reference strain. 

The concept of the reference layer may be applied to 
rocks in two ways. (i) The reference layer may be any 
layer in a multilayered sequence, having a known strain 
state (value and orientation). Strain states may then be 
derived in adjacent layers of estimated viscosity (compe- 
tence) ratio--see previous discussion of rock viscosity. 
(ii) The reference layer may be viewed, conceptually, as 
a layer of average (bulk) characteristics, having a mean 
competence and representing the bulk or regional finite 
strain. This approach may be useful for an 'over-view' of 
strain refraction in varied lithologies, to derive some 
qualitative trends of strain ellipsoid orientation, size and 
shape in particular rock types. The geological implica- 
tions following this approach are investigated now. 

Consider a simple profile view of contrasting 
lithologies (verified as two-dimensionally oblique). 
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Within a sequence with maximum competence contrast 
of 25, a range of strain ellipse shapes might be expected 
as illustrated in Fig. 6. The competent layers should 
show little strain, the incompetent layers intense strain 
dominated by layer-parallel shear. The range of strain 
orientation within a competence range of 100 might be 
as indicated by the refraction of X in Fig. 10. It might be 
expected that strain data from contrasting lithologies 
would indicate such dramatic differences in finite strain, 
controlled largely by lithology. The author knows of no 
such results. The implications of the change in strain 
value and orientation to cleavage refraction in rocks is 
discussed in the next section. 

A single two-dimensional view of strain refraction in 
contrasting lithologies will not reveal the total strain 
refraction pattern: for this, knowledge of the third 
dimension is necessary. In general, it might be expected 
that strong variations of strain ellipsoid shapes, indicated 
by differences in k factors, would occur in different 
lithologies. Certain lithologies might exhibit prolate- 
field strain and others oblate-field strain. 

A critical point of strain refraction was illustrated at 
the coordinates of Figs. 11, 13 and 15 where k = 0 or 
(X = Y or Y = Z) for particular layers. These are the 
points of axial interchange beyond which strain axes in 
the 'changed mode' occur: the third-dimension strain 
axis (Y # 1 or Xor  Z) becomes a different principal axis 
in the refracted ellipsoid. Axial interchange represents 
an extreme form of strain ellipsoid refraction which 
would only be apparent from three-dimensional obser- 
vation. In rocks it might be predicted for particular 
orientations of particular lithologies, as an anomaly. For 
example compare the two cases YA > 1 or X A parallel to 
the third dimension in the layering plane (Figs. 12b and 
16c), each a possible fold axis. For the former, the 
anomaly (axial interchange) would occur in certain com- 
petent layers where the local X direction would be 
parallel to the regional Y = fold axis. For the latter the 
anomaly would be in certain competent layers where the 
local X direction was perpendicular to the regional 
X = fold axis. Thus in rocks, the knowledge that there 
was some extension parallel to fold axes together with 
strain data from a single lithology might lead to incorrect 
assumptions of the regional principal strain directions. 

A final feature of strain refraction is that the strain in 
particular layers is rotational. Figure 10 illustrates the 
rotation of principal strain axes in particular layers by a 
comparison of infinitesimal and finite strain trajectories. 
In the least competent layers, the strain history may be 
approximated to the special form of rotational strain 
(simple shear) by neglecting the layer-orthogonal strain 
components. Layers V = 0.2 and 0.1 in Fig. 10(b) would 
approximate to simple shear of 3' = 6.2 and 12, respec- 
tively. Such approximations may prove valid as a means 
of understanding the nature of strain in markedly incom- 
petent layers. 

Cleavage refraction and fabric changes 

There is a paucity of strain data published for contrast- 

ing layers with cleavage refraction. Most geological 
strain data come from statistical studies in a particular 
lithology (assumed homogeneous) where strain markers 
abound. If perfect strain markers were present in all 
lithologies with refracting cleavages, much of the con- 
troversy on the relationship of cleavage and strain might 
be resolved and the present theory tested. In the mean- 
time, there remains considerable dispute about the 
relationship of strain to cleavages of varied morphology, 
as summarized in the Introduction. While a simple 
application of the present strain-refraction results to 
cleavage refraction patterns in contrasting lithologies 
may be considered unjustified by many geologists, it 
might be a useful empirical test of the validity of qualita- 
tive comparisons of macroscopic cleavage and strain. 
Such tests have been applied to strain and cleavage 
associated with folds (Dieterich 1969), but not recently 
to cleavage refraction independent of folding. 

The preceding strain refraction patterns will now be 
used to infer cleavage patterns on the assumptions that 
cleavages are subparallel to local XY planes (except 
where k >> 1), the strength of cleavage is controlled by 
the degree of strain, and stretching/mineral lineations 
are subparallel to X axes. Thus the X Z  strain ellipses in 
Fig. 6 may be considered indicative of the orientation 
and strength of cleavage in lithologies with relative 
competence 5 and 0.2 (a competent/incompetent ratio of 
25). Poor cleavage might be inferred for competent 
layers and intense cleavage for incompetent layers. The 
effect of competence on cleavage orientation is rep- 
resented in Fig. 10 which simulates a maximum compe- 
tent/incompetent ratio of 100. The pattern of refraction 
of trace 3 (Fig. 10a) from subnormal to layering towards 
progressively acute cleavage-bedding angles, strongly 
resembles cleavage refraction in upward-graded rocks 
(e.g. Fig. 17a). Associated with angular cleavage refrac- 
tion simulated by Fig. 10 would be a progressive increase 
in cleavage intensity as competence decreases. 

The predicted relationships of cleavage intensity and 
orientation to lithology may be summarized as two 
generalized trends from the mean (bulk) state. 

Trend 1. With increasing relative competence the 
cleavage should refract to bedding-perpendicular or 
bedding-parallel; (bedding-perpendicular for shortened 
layers, bedding-parallel for elongated layers). In layers 
of exceptionally high relative competence, cleavage 
should be absent. 

Trend 2. With decreasing relative competence, the 
cleavage should refract towards the bedding plane, and 
increase in intensity. In layers of exceptional incom- 
petence, cleavage may be an intense foliation sub- 
parallel to bedding. 

These two trends predicted from the theoretical 
results would seem to be verified by observation in 
single-deformed contrasting lithologies (e.g. Fig. 17). 
Trend 1 is the generalized trend for psammitic rocks and 
trend 2 for pelitic rocks (Fig. 17b), but equally it is 
observed that the morphology of trend 1 is spaced (e.g. 
'fracture' cleavage) whereas trend 2 is penetrative 
(slaty). Are these morphological differences a result of 
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Fig. 17. Schematic cleavage refraction patterns in natural folds. (a) 
Cleavage in two graded layers (A & B) and mudstone (C) after 
Treagus (1982, fig. 5). (b) Cleavage in folded psammite (PS) semipelite 

(SP) and pelite (PE) after Treagus (1982, fig. 6). 

mineralogical differences in contrasting layers, such as 
the presence or absence of phyllosilicates vs quartz? Or 
could it be argued that it is the degree of strain achieved 
in a particular lithology (more in phyllosilicate-rich 
pelites than in psammites) which controls the type of 
cleavage morphology? Studies of the evolution of slaty 
cleavage (Roy 1978, Piqu6 1982) from an uncleaved to 
cleaved state demonstrate the progressive decrease of 
cleavage-domain spacing towards a penetrative fabric, 
within a single lithology. Thus, cleavages of various 
morphologies might be regarded as occupying a cleavage 
deformation path from spaced to penetrative (continu- 
ous) cleavage, along which particular lithologies have 
progressed to different points according to their finite 
strain states. 

Such are the predicted two-dimensional features of 
cleavage refraction in rocks. In three dimensions, 
changes in strain ellipsoid shape from layer to layer may 
give rise to a range of related cleavage and lineation 
fabrics. It might be assumed that the refraction patterns 
seen in two dimensions (e.g. in a fold profile plane) 
might be projected simply into three dimensions. In such 
a model, cleavages would refract about a constant axis, 
the fold axis (Y), with extension lineations (X) perpen- 
dicular to the cleavage-bedding intersection (Y). How- 
ever, this model of cleavage refraction is only perfectly 
verified, theoretically, when Y = 1 and all refracting 

strain ellipsoids are plane strain, k = 1. For the more 
general strain relationships of Y ¢ 1 or X or Z parallel to 
layering, strong variations in ellipsoid k values and local 
axial interchange are expected to affect the nature of 
cleavage and its attitude. Cleavages with stretching 
lineations would be expected in rocks where k ~ 1, 
cleavage without clear lineation where k ~ 1, and linea- 
tions without cleavage as k ~> 1. Cleavage and lineation 
refraction might be anomalous in localities of axial 
interchange. 

Some generalized predictions are given on the 
relationship of cleavages and lineations for four two- 
dimensionally oblique strain configurations. 

(1) Y = foldaxis,  bulk Y > 1 (Figs. 11 and 12). Bulk 
cleavage-bedding intersections are parallel to fold axes, 
extension lineations (if present) perpendicular. Compe- 
tent layers show weak refracted cleavage (trend 1), 
cleavage-bedding intersections parallel to fold axes (gen- 
erally local Y) and lineations (X) perpendicular to fold 
axes or anomalously parallel to fold axes. Incompetent 
layers have a strong refracted cleavage according to 
trend 2 and stretching lineations perpendicular to 
cleavage-bedding intersections and fold axes. 

(2) Y = fold axis, bulk Y < 1 (Figs. 11 and 12). Bulk 
cleavage-bedding intersections are parallel to fold axes, 
extension lineations perpendicular. Bulk fabric planar 
to linear according to Y value. Competent layers show 
weak refracted cleavage (trend 1) with extension linea- 
tion perpendicular to fold axes or anomalous cross cleav- 
age (not fully assessed with respect to the cross folding in 
Y). Incompetent layers show a strong refracted cleavage 
(trend 2) with strong stretching lineations perpendicular 
to cleavage-bedding intersections and fold axes. 

(3) X = fold axis, bulk Y = 1 oblique to bedding 
(Figs. 15 and 16). Bulk cleavage bedding intersections, 
parallel to fold axes, are parallel to extension lineations. 
Competent layers have a weak linear fabric parallel to 
fold axes. Incompetent layers have a strongly-planar 
refracted cleavage probably lacking an extension linea- 
tion; if present, lineations will be parallel to fold axes or 
anomalously perpendicular. 

(4) Z parallel to layering, bulk Y = 1 oblique (Figs. 
13 and 14). Bulk cleavage- bedding intersections are 
parallel to fold axes oblique to stretching lineations. 
Competent layers have a weak planar fabric with linea- 
tions (if present) perpendicular to cleavage-bedding 
intersections. Incompetent layers have strong linear fab- 
rics at acute angles to fold ax~s, lying in the plane of bulk 
cleavage. Anomalies of axial interchange may give local 
'secondary' fabrics. These predictions are only applica- 
ble to uniformly-bedded rocks or hinge zones of folds; 
the limbs would be three-dimensionally oblique. 

The summaries of characteristic relationships between 
planar and linear fabrics in contrasting lithologies in 
particular bulk strain states may be useful in determining 
the orientation and relative values of bulk strain in 
deformed rocks. Despite the strong variations from 
planar to linear fabrics predicted, and the occurrence of 
certain anomalous fabrics, the two fabric trends with 
increasing and decreasing competence would appear to 
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dominate fabric refraction. The fabric, whether planar, 
linear or anomalous, will be weak in relatively compe- 
tent layers and strong in relatively incompetent layers. 

Cleavage refraction related to folds 

The features of cleavage and lineation refraction have 
been predicted for specific two-dimensionally oblique 
strain configurations with respect to fold axis orienta- 
tion. However folding is not a necessity for strain and 
cleavage refraction. The refraction arises from compati- 
bility theory in obliquely strained layers which might be 
uniformly dipping or parts of folds (e.g. limbs). Thus, 
the strain or cleavage refraction of curve 3 of Fig. 10(a) 
entirely results from the chosen strain state (shaded 
layer) and viscosity ratios; it is equally applicable to a 
regularly dipping sequence of rocks or part of a fold limb 
such as in Fig. 17(a). The fabric relationships are 
described in relation to fold axes simply because con- 
trasting lithologies are commonly folded and fold axes 
are the major structural data with which to compare the 
fabrics. Apart from localized strain and cleavage in fold 
hinge zones, the process of folding is here viewed as a 
periodic and variable body rotation which imposes vari- 
able systems of oblique strain. It is the obliquity of strain 
within layers of variable competence which is proposed 
as the mechanism for strain and cleavage refraction in 
the limbs of folds, not the mechanism of folding. 

This approach clearly differs from the methods of fold 
analysis based on particular strain models in folding 
(Ramsay 1967, Hobbs 1971, Hudleston 1973); such mod- 
els do not consider whether particular strain patterns are 
compatible for contrasting layers. However, some fold 
models are rooted in empirical observations from experi- 
mental models and rocks, and may be good approxima- 
tions of strain behaviour for particular relative com- 
petencies. The patterns of strain described in this paper 
for relatively high competencies approximate well to 
tangential longitudinal strain, and for relatively low 
competencies to flexural flow (simple shear); these are 
Ramsay's (1967) two principal models of strain in folded 
layers. In contrast the model of folding followed by 
homogeneous strain ('flattening' of Ramsay 1962, 1967) 
or folding with simultaneous 'flattening' (Hudleston 
1973) are not consistent with the present strain refraction 
results if competence contrasts exist within the folding 
sequence; 'flattening' should be inhomogeneous. The 
extent to which fold geometry and cleavage refraction 
data may be combined (following Treagus 1982) to 
provide estimates of local strain and competence ratios 
in natural folds, is the subject of current research. 

Fabrics in polyphase deformation 

The foregoing discussion of cleavage and lineation 
refraction in folded or unfolded rocks relates specifically 
to primary deformation. The investigation of the 
relationship of cleavage and strain in the Introduction 
was restricted to primary/first cleavage. For secondary 
crenulation cleavage or schistosity, the relationships of 

schistosities and lineations would not be independent of 
the earlier strain and fabric. Thus the predicted relation- 
ships for cleavage refraction would appear inapplicable 
to rocks which suffered polyphase deformation. How- 
ever, some of the general features may prove relevant to 
understanding the progressive development of strain 
and fabric in multiply deformed rocks. The intensity of a 
fabric was suggested to be a function of relative compe- 
tence, and this factor would operate throughout a com- 
plex deformation history if competence contrasts 
remained constant. Thus, a competent psammitic layer 
might be expected to develop weak fabrics for each 
deformation phase (or a single cumulative fabric of 
increasing intensity with each phase). In contrast, an 
incompetent pelitic layer with a strong first cleavage 
would subsequently deform in relatively intense strain, 
so might be expected to develop a strong secondary 
fabric. The total strain in such contrasting lithologies is 
thus expected to follow the two competence trends. 
However, it is probable that competence ratios do not 
remain fixed during polyphase deformation with 
metamorphism. As competence ratios approach unity 
incremental strain would approach the state of 
homogeneous strain. 

CONCLUSIONS 

The following conclusions are drawn for strain vari- 
ation in contrasting Newtonian viscous layers. 

(1) In all contrasting multilayers, except those where 
one principal strain axis is perpendicular to interface 
planes, strain will be inhomogeneous. 

(2) In general, finite strain will vary in inverse propor- 
tion to viscosity or competence. 

(3) The principal strain axes will refract from layer to 
layer, and thus the principal planes (e.g. XY) will refract. 
In this theory the refraction can be considered as two- 
dimensional about an axis in layering which is a principal 
strain. 

(4) In all cases except plane strain with Y = 1 parallel 
to layering, there will be a change of ellipsoid shape 
defined by the k value. Oblate ellipsoids may refract to 
prolate ellipsoids at competence interfaces. 

(5) In some cases, extremes of shape change arise 
where the ellipsoid has passed through a k = 0 or k = 
threshold, and principal axes have interchanged with 
respect to adjacent layers. 

(6) Compatible states of finite strain will generally 
have developed by rotational incremental strain. 

(7) The features of strain refraction described are 
similar to the features of cleavage in rocks with compe- 
tence contrast: weak cleavage (spaced) at high angle to 
bedding in competent rocks; strong cleavage (slaty) at 
more acute angles to bedding in incompetent rocks. 

If cleavages are assumed to be subparallel to X Y  
planes of finite strain and extension lineations are paral- 
lel to X, further geological conclusions may be drawn. 

(8) Cleavage perpendicular or parallel to bedding 
will not refract through contrasting lithologies. (This 
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was observed by Sorby (1853), quoted in the Introduc- 
tion.) 

(9) Cleavage oblique to bedding in one lithology must 
refract through contrasting lithologies. 

(10) Uniformly-oriented cleavage should only occur 
within a homogeneous rock of uniform dip. 

(11) Fabrics may change from planar to linear at 
lithological boundaries. 

(12) The orientation of a cleavage and/or extension 
lineation in a single lithology may not indicate the bulk 
or regional strain axes. 
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APPENDIX 1 

Criterion (6), given in "Theoretical model of two-dimensional finite 
strain refraction" is that rnx = rBx at the interface A to B. Con- 
sequently rtnS'nx = r/BS'Bx can be written, where r/is Newtonian viscos- 
ity and 5' shear strain rate; this simplifies to ~/Ax/~/Bx = V where 
V = r/ah?A. The integral of this ratio with time is '~Ax/YBx = V if V 
remains constant in time. This integration is tested as follows. 

Consider an instant after the first small increment of deformation 
such that in A and B the shear strains "y~x/yiBx = V (Treagus 1981). 
Add a small increment of shear strain (simple shear) in the ratio 
dynx/dyBx = V so that the new shear strain y" may be written ,yii = 

y' + dy; it is apparent that y~x/y~ix = V. Now consider a small incre- 
ment of normal strain (pure shear) in x and y. The change in angles of 
shear may be expressed (Ramsay 1967, p. 67) in the form tan 0' = 
tan 0 (A2/)tl) l[z. The above shear strains being tangents would be 
distorted to 'new' shear strains y iii 

y~i x = y~, (gnx/gAy) v2 and y/~ = Y~x (gB,/gBy) ''2. 

gAx, gAy and ~Bx, gBy are principal quadratic elongation increments in 
the small increment of pure.shear in A and B. For continuity gAx = gBx 

II1 I n  i i  i i  and gAy = gBy- Thus, YAx/YBx = YAJYB× = V. Therefore, during the 
progressive development of shear strain, the ratio of shear strains at 
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the interface remains equal to V despite the effect of normal strain 
components.  For a fuller t reatment  of interface problems, in both 
Newtonian and non-Newtonian materials, see Cobbold (this issue). 

A P P E N D I X  2 

The relationships given by the laws of continuity (5) and (6) in the 
section "Theoretical model of two-dimensional finite strain refraction" 
can be written in terms of principal quadratic elongations and angles, 
defined in Fig. 2. Adopting reciprocal quadratic elongations (Ramsay 
1967 p. 66) as most convenient,  the following equations can be written. 

A~,x = (A~3 + A~l) -- (A~,3 -- A~a)cos 20~ (1) 
2 

y~,× = (A~,3 - A~ . I )  s i n  2 0 ~  ( 2 )  

2 

where y~× = Yax. A~x. Because of the condition of plane strain given by 
law 4, A~3 = 1/A~. Thus 

A~x = (1 + h~,~) - (1 - a~, 2) cos 20~, (3) 
2A~l 

and Y~x = (1 - h ~ )  sin 20~ (4) 
2h~,t 

Similarly, A~× - (1 + At]~) - (1 - A~) cos 20t] (5) 
2At]l 

and Yt]x =(1 - Xt]~) sin 20~ (6) 
2At]~ 

From law 5, X~,~ = X~x; hence 

(1 + A~,]) - (1 - Aj,~) cos 20~. 
2A~ 

~2 = (1 + An, ) - (1 - A~ 2) cos20t] (7) 
2At]~ 

From law 6 y~fly~× = V; hence 

(1 - X~, 2) sin 20~, _ V(1 - At]2) sin 20t] (8) 
2A~,~ 2Xt]~ 

From equations (7) and (8) it is clear that if the size and orientation 
of the strain ellipse is known in one layer, it can be derived in an 
adjacent layer of known viscosity ratio. It will be assumed that A is the 
known material: thus h~,~, 0~, and V are known variables and ht]~ and Ot] 
are unknown. Explicit solutions h~l = f~(A~,t, 0~., V) and O~ = 

f2(A~l, 0~., V) will not be derived because the algebra is lengthy and 
involved. Instead, solutions A~I = f3(A~x, Y~,x, V) and 0~ = 
f4(A~x, Y~x, V) will be obtained. 

The known variables A~x and Y~x will be termed L and S, respec- 
tively, as given by (3) and (4). Thus, (7) and (8) can be written 

(1 + h ~ )  - (1 - A~) cos 20~ = L (9) 
2At]l 

(1  - A6~) sin 20~ = S/V.  (10) 
2A~l 

Squaring (10) gives 

4s2(~')  (11) sin 2 20~ = V2(1 _ At]~)2 

and by trigonometric substitution 

cos 2 20t] = V2(1 - At]~)z - 4S2AB~ 
v~(1 _ x~2)~ (12) 

Squaring (9) 

cos 2 20t] (At]lz -- 2LAt]l + 1)2 
(1 - A ~ )  z 

Equating (12) and (13) 

LAt]~ - h.~l(1 + L z + SzIV 2) + L = O. 

This may be written as a simple quadratic equation 

xfi~ - MXfi~ + 1 = 0, 
1 + L 2 + S2IV: 

where M = 
L 

Hence At] 1 = M - (M 2 - 4) v2 

and At]3 = M + (M 2 - 4) vz. 

Substitution for ~.~l in (10) gives 

2S 
sin 20~ = V(M2 _ 4)it z- 

Similarly, from (9) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

M - 2L 
cos 206 - (M 2 _ 4)vz (20) 

From (19) and (20) 06 can be expressed directly in terms of S, L and V: 

2 S L V  
tan 286 = V2 _ V2L2 + $2 (21) 

The above equations for At]l, At] 3 and 86 are given in summary in 
Table 1. 


